On pseudolikelihood inference for semiparametric models with boundary problems

نویسندگان

  • Y. Chen
  • J. Ning
  • Y. Ning
  • K.-Y. Liang
  • K. Bandeen-Roche
چکیده

Consider a semiparametric model indexed by a Euclidean parameter of interest and an infinite-dimensional nuisance parameter. In many applications, pseudolikelihood provides a convenient way to infer the parameter of interest, where the nuisance parameter is replaced by a consistent estimator. The purpose of this paper is to establish the asymptotic behaviour of the pseudolikelihood ratio statistic under semiparametric models. In particular, we consider testing the hypothesis that the parameter of interest lies on the boundary of its parameter space. Under regularity conditions, we establish the equivalence between the asymptotic distributions of the pseudolikelihood ratio statistic and a likelihood ratio statistic for a normal mean problem with a misspecified covariance matrix. This result holds when the nuisance parameter is estimated at a rate slower than the usual rate in parametric models. We study three examples in which the asymptotic distributions are shown to be mixtures of chi-squared variables. We conduct simulation studies to examine the finite-sample performance of the pseudolikelihood ratio test.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric estimation in general repeated measures problems

The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a...

متن کامل

Plemt: a Novel Pseudolikelihood Based Em Test for Homogeneity in Generalized Exponential Tilt Mixture Models.

Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

An alternative pseudolikelihood method for multivariate random-effects meta-analysis

Recently, multivariate random-effects meta-analysis models have received a great deal of attention, despite its greater complexity compared to univariate meta-analyses. One of its advantages is its ability to account for the within-study and between-study correlations. However, the standard inference procedures, such as the maximum likelihood or maximum restricted likelihood inference, require ...

متن کامل

An Asymptotic Theory for Model Selection Inference in General Semiparametric Problems

Recently, Hjort and Claeskens (2003) developed an asymptotic theory for model selection, model averaging and post-model selection/averaging inference using likelihood methods in parametric models, along with associated confidence statements. In this paper, we consider a semiparametric version of this problem, wherein the likelihood depends on parameters and an unknown function, and model select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2017